Literature ########## .. [davidson-corr] Davidson, Ernest R.; The World of Quantum Chemistry 17--30, (1974), Configuration interaction description of electron correlation , `https://doi.org/10.1007/978-94-010-2156-2_2 `_ .. [pulay1980] Convergence acceleration of iterative sequences. The case of scf iteration. Pulay, P., *Chem. Phys. Lett.* **73**, 393--398 (1980), `http://dx.doi.org/10.1016/0009-2614(80)80396-4 `_ .. [pipek1989] A fast intrinsic localization procedure applicable for abinitio and semiempirical linear combination of atomic orbital wave functions. Pipek, J.; Mezey, P. G., *J. Chem. Phys.* **90**, 4916--4926 (1989), `http://dx.doi.org/10.1063/1.456588 `_ .. [jeziorski1994] Perturbation theory approach to intermolecular potential energy surfaces of van der Waals complexes. Jeziorski, B.; Moszynski, R.; Szalewicz, K., *Chem. Rev.* **94**, 1887--1930 (1994), `http://dx.doi.org/10.1021/cr00031a008 `_ .. [rabuck1999] Improving self-consistent field convergence by varying occupation numbers. Rabuck, A. D.; Scuseria, G. E., *J. Chem. Phys.* **110**, 695--700 (1999), `http://dx.doi.org/10.1063/1.478177 `_ .. [kudin2002] A black-box self-consistent field convergence algorithm: One step closer. Kudin, K. N.; Scuseria, G. E.; Cancès, E., *J. Chem. Phys.* **116**, 8255--8261 (2002), `http://dx.doi.org/10.1063/1.1470195 `_ .. [scc-overview] Szalay, P.; Encyclopedia of Computational Chemistry , (2005), Configuration interaction: Corrections for size-consistency , `https://onlinelibrary.wiley.com/doi/abs/10.1002/0470845015.cn0066 `_ .. [aquilante2011] Aquilante, F.; Boman, L.; Boström, J.; Koch, H.; Lindh, R.; de Merás, A. S.; Pedersen, T. B.; Linear-Scaling Techniques in Computational Chemistry and Physics 301--343, (2011), Cholesky decomposition techniques in electronic structure theory .. [limacher2013] A new mean-field method suitable for strongly correlated electrons: computationally facile antisymmetric products of nonorthogonal geminals. Limacher, P. A.; Ayers, P. W.; Johnson, P. A.; De Baerdemacker, S.; Van Neck, D.; Bultinck, P., *J. Chem. Theory Comput.* **9**, 1394--1401 (2013), `http://dx.doi.org/10.1021/ct300902c `_ .. [boguslawski2014a] Efficient description of strongly correlated electrons with mean-field cost. Boguslawski, K.; Tecmer, P.; Ayers, P. W.; Bultinck, P.; De Baerdemacker, S.; Van Neck, D., *Phys. Rev. B* **89**, 201106(R) (2014), `http://dx.doi.org/10.1103/PhysRevB.89.201106 `_ .. [boguslawski2014b] Non-variational orbital optimization rechniques for the AP1roG wave function. Boguslawski, K.; Tecmer, P.; Ayers, P. W.; Bultinck, P.; De Baerdemacker, S.; Van Neck, D., *J. Chem. Theory Comput.* **10**, 4873--4882 (2014), `http://dx.doi.org/10.1021/ct500759q `_ .. [limacher2014] Simple and inexpensive perturbative correction schemes for antisymmetric products of nonorthogonal geminals. Limacher, P. A.; Ayers, P. W.; Johnson, P. A.; De Baerdemacker, S.; Van Neck, D.; Bultinck, P., *Phys. Chem. Chem. Phys* **16**, 5061--5065 (2014), `http://dx.doi.org/10.1039/C3CP53301H `_ .. [boguslawski2015a] Orbital entanglement in quantum chemistry. Boguslawski, K.; Tecmer, P., *Int. J. Quantum Chem.* **115**, 1289--1295 (2015), `http://dx.doi.org/10.1002/qua.24832 `_ .. [boguslawski2015b] Linearized coupled cluster correction on the antisymmetric product of 1-reference orbital geminals. Boguslawski, K.; Ayers, P. W., *J. Chem. Theory Comput.* **11**, 5252--5261 (2015), `http://dx.doi.org/10.1021/acs.jctc.5b00776 `_ .. [boguslawski2016a] Targeting excited states in all-trans polyenes with electron-pair states. Boguslawski, K., *J. Chem. Phys.* **145**, 234105 (2016), `http://dx.doi.org/10.1063/1.4972053 `_ .. [boguslawski2016b] Analysis of two-orbital correlations in wavefunctions restricted to electron-pair states. Boguslawski, K.; Tecmer, P.; Legeza, Ö, *Phys. Rev. B* **94**, 155126 (2016), `http://dx.doi.org/10.1103/PhysRevB.94.155126 `_ .. [meissner-overview] Erturk. M.; Meissner, L.; Electron correlation in molecules - ab initio beyond Gaussian quantum chemistry 145--160, (2016), Chapter Seven - Size-extensivity corrections in single- and multi-reference configuration interaction calculations , `https://www.sciencedirect.com/science/article/pii/S0065327615000362 `_ .. [boguslawski2017a] Benchmark of dynamic electron correlation models for seniority-zero wavefunctions and their application to thermochemistry. Boguslawski, K.; Tecmer, P., *J. Chem. Theory Comput.* **13**, 5966--5983 (2017), `http://dx.doi.org/10.1021/acs.jctc.6b01134 `_ .. [boguslawski2017b] Erratum: Orbital entanglement in quantum chemistry. Boguslawski, K.; Tecmer, P., *Int. J. Quantum Chem.* **117**, e25455 (2017), `http://dx.doi.org/10.1002/qua.25455 `_ .. [boguslawski2017c] Erratum: Targeting excited states in all-trans polyenes with electron-pair states. Boguslawski, K., *J. Chem. Phys.* **147**, 139901 (2017), `http://dx.doi.org/10.1063/1.5006124 `_ .. [boguslawski2019] Targeting Doubly Excited States with Equation of Motion Coupled Cluster Theory Restricted to Double Excitations. Boguslawski, K., *J. Chem. Theory Comput.* **15**, 18--24 (2019), `http://dx.doi.org/10.1021/acs.jctc.8b01053 `_ .. [valeev2019] A library for the evaluation of molecular integrals of many-body operators over Gaussian functions. E. F. Valeev; (2019), `http://libint.valeyev.net/ `_ .. [patkowski2020] Recent developments in symmetry-adapted perturbation theory. Patkowski, K., *WIREs Comput. Mol. Sci.* **10**, e1452 (2020), `http://dx.doi.org/10.1002/wcms.1452 `_ .. [nowak2021] Orbital entanglement and correlation from pCCD-tailored Coupled Cluster wave functions. Nowak, A.; Legeza, Ö.; Boguslawski, K., *J. Chem. Phys.* **154**, 084111 (2021), `http://dx.doi.org/10.1063/5.0038205 `_ .. [boguslawski2021] Open-shell extensions to closed-shell pCCD. Boguslawski, K., *Chem. Commun.* **57**, 12277--12280 (2021), `http://dx.doi.org/10.1039/D1CC04539C `_ .. [leszczyk2022] Assessing the accuracy of tailored coupled cluster methods corrected by electronic wave functions of polynomial cost. Leszczyk, A.; Máté, M.; Legeza, Ö.; Boguslawski, K., *J. Chem. Theory Comput.* **18**, 96--117 (2022), `http://dx.doi.org/10.1021/acs.jctc.1c00284 `_